基因改造細菌能夠把天然氣裡的甲烷轉變成運輸用液態柴油?一個結合英美合作夥伴的科學團隊最近獲得資金挹注,將著手進行上述研究。
目前,一些油井的天然氣通常都直接燒掉;另外也有些蘊藏量小的天然氣田,因不具採規模而閒置。這項技術的研發,便是希望能善用這些天然氣,避免浪費;也避免甲烷逸散到大氣中,造成溫室效應。
研究團隊認為,如果甲烷能變成液態燃料,便能透過油管運送至煉油廠,提煉成運輸用柴油,讓貨卡車、小客車和飛機都能使用。這項研發吃甲烷微生物的計畫,已獲得美國能源部「高級能源研究計畫局」(Advanced Research Projects Agency – Energy,ARPA-E)480萬美元的資近。
主導研究的是華盛頓大學團隊,他們鎖定的對象是一種自然存在於甲烷中的「甲烷氧化菌」(methanotrophs)──這種細菌能夠從天然氣中製造出脂質,只是其天然的脂質產量無法達到可在商業上獲利的水準,因此科學家打算引入基因改造技術,除了可擴大其產能,也可讓該細菌製造更多非磷基脂(non-phosphorous-based lipid),好讓脂類容易轉換成燃料。
首席研究員、華盛頓大學化工與微生物教授Mary Lidstrom表示,「我們鎖定的目標,是要製造出和柴油一樣性質的燃料,不論是貨卡車、船隻、汽車、牽引機,可以用柴油的,都能用這種燃料。」
培養細菌 利用浪費掉的天然氣
這些科學家將和美國能源部再生能源實驗室(NREL)與兩家企業合作,研究場域包括開發中油田所蘊藏的天然氣──在這裡,大部分油田都是把天然氣當廢氣燒掉,另外還有淺灘天然氣區──這些地方因為規模太小,拉管不具經濟效益而未開發。
根據統計,全世界從油井燒掉或溢漏的天然氣量,相當於美國一年石油消耗量的1/3,而甲烷又是主要的溫室氣體之一,大氣中每個甲烷分子對暖化的貢獻度相當於二氧化碳分子的12倍。
研究團隊 各司其職
此研究的四個合作夥伴各有其角色。華盛頓大學負責研發出最能有效把甲烷轉換為高能量脂質分子的細菌。
設立於伊利諾州的LanzaTech公司,專長在研發垃圾沼氣利用科技,負責發展出高校的基因改造細菌量產技術,「把甲烷直接轉換成柴油,不但能大幅提升能源供應,又能減緩溫室氣體效應。我們很高興成為這個強力團隊的一員,並且能把我們商用地氣體發酵專業應用在新領域。」該公司執行長Jennifer Holmgren如此表示。
接下來是NREL,該研究室設在科羅拉多州Golden市,必須找出有效技術,從微生物細胞中萃取出高能量分子;並負責用來展現天然細菌和基改細菌產能的發酵設備。「我們有數十年生產生質燃料和脂質的經驗,過去我們也在藻類利用上做過同樣的事。」該機構液態柴油計畫首席研究員Phil Pienkos指出,「這一次,我們將應用在新的原料上,也就是天然氣,並定會是提煉燃料的好材料。」
NREL也會從細菌提煉出脂質,並分析這項計畫的潛在經濟效益。
最後,英國的化學公司Johnson Matthey則負責利用化學催化劑,將甲烷中的脂質轉換成燃料。
LanzaTech公司已簽下合約,成功的話,再把這項先期計畫擴展為商業級。
Genetically modified bacteria are the central feature of a newly funded research project that aims to convert the methane found in natural gas to liquid diesel fuel for transportation.
An international consortium of scientists says that if methane gas can be turned into a liquid, it could be piped to refineries where it can be made into diesel suitable for trucks and cars, or airplane jet fuel.
Their proposal to develop a microbe that eats the methane in the gas has won a $4.8 million Advanced Research Projects Agency – Energy (ARPA-E) award from the U.S. Energy Department.
The University of Washington is taking the lead and focusing on genetically modifying microbes called methanotrophs that grow naturally on methane. They have a natural ability to make fats, or lipids, from the gas.
But the unmodified microbes can’t naturally produce enough lipids to yield a commercial profit without some help from genetic engineers.
The UW team aims to genetically engineer the methanotrophs to increase the amount of lipids and also to produce non-phosphorous-based lipids that are easily converted to fuels.
“The product that we’re shooting for will have the same fuel characteristics as diesel,” said principal investigator Mary Lidstrom, a UW professor of chemical engineering and microbiology. “It can be used in trucks, boats, buses, cars, tractors – anything that diesel does now.”
The UW engineers will work with scientists at the Department of Energy’s National Renewable Energy Lab and two industry partners. They will target the natural gas associated with oil fields, which is often flared off as waste, as well as so-called stranded natural gas reserves that are too small for a pipeline to be economically viable.
The amount of natural gas flared or vented from oil wells globally is equal to one-third of the amount of petroleum used in the United States each year. And methane is a potent greenhouse gas. Every molecule of methane vented to the atmosphere in that process has the global-warming capacity of 12 molecules of carbon dioxide.
Each of the four project partners has a distinct role.
First, the UW team will develop a version of the bacteria that efficiently converts methane to energy rich fat-like molecules.
Then LanzaTech, Inc., an Illinois-based pioneer in waste-to-biofuels technology, will develop a way to grow the genetically modified bacteria in large quantities at high efficiency.
“The direct conversion of methane to diesel has the potential to dramatically increase energy supply while mitigating greenhouse gas impact,” said Dr. Jennifer Holmgren, CEO at LanzaTech. “We are excited to partner with such a strong team and to have the opportunity to leverage our commercial gas fermentation expertise in this new sector.”
Next the National Renewable Energy Lab in Golden, Colorado will devise an efficient way to extract the energy-rich molecules from the microbe’s cells. NREL will be in charge of fermentation to demonstrate the productivity of the bacteria, both the natural organisms and the genetically-altered varieties.
“We’ll be leveraging our decades of experience in producing biofuels and lipids, which in the past we’ve typically done via algae,” said Phil Pienkos, NREL’s principle investigator on the liquid-to-diesel project.
“Here, we’ll be applying it to a brand new feedstock, natural gas. It would be a good feedstock for a refinery,” Pienkos said.
NREL will extract the lipids from the bacteria and analyze the economic potential of the plan.
Finally, partners at Johnson Matthey, a British chemical company, will use chemical catalysts to convert the lipids in the methane into fuel.
LanzaTech has signed on to take the bench-scale plan to the commercial level, if it is successful.
※ 全文及圖片詳見:ENS